

Spaceborne Infrared Atmospheric Sounder – GEO (SIRAS-G)

Thomas Kampe
Ball Aerospace & Technologies Corp
AIRS Science Team Meeting
March 30, 2007

SIRAS-G Instrument Incubator Overview and Objectives

Objective

- Develop instrument technology for IR atmospheric sounding from GEO and LEO
- Validate operational performance in a laboratory demonstration
- Generate a design recommendation for space flight instrument

SIRAS-G IIP Awarded in 2003

Partners:
NASA/Jet

Development

Propulsion Laboratory

Evolution of the SIRAS-G Program

AIRS

- The Atmospheric Infrared Sounder (AIRS) provides 3-dimensional maps of air and surface temperature, water vapor, and cloud properties.
- AIRS has 2378 spectral channels, AIRS has a spectral resolution more than 100 times greater than previous IR sounders

SIRAS-1999

- Ball supported JPL
- Designed, built & cryogenically tested 12-15.4um spectrometer
- Integrated AIRS detector array
- Developed test facilities for testing the spectrometer at cryogenic temperatures

SIRAS-1999 Spectrometer In Test Dewar

SIRAS-G

- Builds on the success of SIRAS-1999
- Demonstrates a complete IR imaging spectrometer operating over the 3.4 – 4.9 um region
- Laboratory demo instrument incorporates a 4- \ mirror reflective collimator, a 4-element refractive camera, a flat grating, and a large area FPA
- Instrument concept uses several spectrometers to provide full coverage from 3.4 – 15.4 um

Demo Instrument Optimized for Large Format Array

- Teledyne Hawaii 1-RG Array
- 1024 x 1024 Format Array
- 0.018-um Pixel Pitch
- Spatial and spectral resolution elements = 2 pixels
- Image of slit is smaller in length than FPA:
 - Avoids illuminating inactive pixels or leads & wires around FPA
 - Provides margin for alignment of FPA to slit
 - Since ends of slit are on active pixels, alignment of the slit can be measured
 - Simplifies alignment of FPA to detector housing and optical system

Alignment Fiducials in SIRAS-G OBA

Fiducial Detail

Mirror Fiducial Detail

Collimator Mirror 1

Fiducial

Camera Lens Elements Bonded into Separate Cells

- The refractive lens elements for the camera were fabricated by ISP Optics
- Delivered on 8/15/2005
- All elements meet requirements
- As-built data will be used to re-optimize system prior to assembly
- Lens elements bonded using Dow Corning 93-500 Silicone Adhesive
- Low out-gassing
- Wide operational temperature range: Remains compliant to 100 K
- Extensive BATC heritage
- Bond thicknesses and widths sized to minimize stress with temperature

Athermal mount design approach documented in SPIE paper: Herbert, J. (2006), Proc. SPIE Vol. 6288, 62880J, Current Developments in Lens Design and Optical Engineering VII; Pantazis Z. Mouroulis, Warren J. Smith, R. Barry Johnson; Eds.

Element	Bondline Thickness determined from Deluzio Equation	
Lens 1 Ge, 86 mm dia.	0.037"	
Lens 2 Si, 92 mm dia.	0.048"	
Lens 3 Ge, 92 mm dia.	0.040"	
Lens 4 ZnS, 72 mm dia.	0.030"	

Laboratory Demo Instrument Completed

All Major
Hardware
Subsystems
have been
integrated
into the
Laboratory
Demo
Instrument

Flat Ruled Grating

SIRAS-G Flight-like FPA Package

SB-235 CryoCooler

WFOV Refractive Camera

SIRAS-G Aft-Optics Assy

Optical Bench

Desired Performance Achieved in Cryogenic Testing

- 0.8 Spectra calculated using Genspect Measured spectra

 Pixel 615
 4.258 um

 4.3 um (v₃) CO₂
 Absorption band

 3.4 3.5 3.8 4 4.2 4.4 4.5 4.8 5
 - **SIRAS-G Measured Spectra**

- Measurements show low spectral smile and keystone distortion
- Dispersed MWIR spectrum obtained by SIRAS-G Demo Instrument

Warm Shield Implementation

- Lab Demo demonstrated feasibility of Multi-Stage Warm Shields
- High performance warm shield eliminates need for true cold shield
- This is the first known application of warm shields to IR imaging spectrometers
- Mature design methodology in place to support warm shield designs for additional wavelength ranges, etc.
- Design, geometry and warm shield positioning well understood for extrapolation to other spectrometers
- Excel spreadsheet provides insights into sensitivities
- Test methodology for validating warm shield performance under development

- SIRAS-G do not have a cold stop in the traditional sense of locating the stop at the detector dewar.
- The stop is located at the gratings because that improves the control of the spectrometer distortions (keystone and smile)
- Not having a cold stop introduces thermal background seen by the detectors
- This can be reduced by:
 - Using warm shields
 - Reducing the temperature of the cavity
- Multi-stage warm shield concept originally developed on SIRAS-G

Impact of Using Warm Shields (LWIR Pathfinder)

 Channel 1 and 2 data sets from cycle 4 and 4b. Channel 1 is largely unchanged and channel 2 has much higher near field thermal background

Radiative Transfer Tools Developed to Provide Insight to Instrument Performance

Example: Impact of LW Cutoff on Temperature Sounding

Objective:

- Evaluate the impact on retrievals of reducing FPA performance or eliminating channels near 15 μm
 - Advantage is potential reduction in cost and/or technical development
 - These channels have greatest sensitivity to temperate in upper troposphere and lower stratosphere (UT/LS)

Results:

- 0.2K improvement in upper troposphere (<220 mb) and lower stratosphere with 650 cm⁻¹ cutoff
- No significant additional temperature information is obtained with inclusion of the SMW (1650-2250 cm⁻¹) water vapor band
 - < 2250 cm⁻¹ region only sensitive to low level temperature
 - > 2250 cm⁻¹ could improve UT/LS temperature but problem with NLTE in 4.3 μm region

Spectrometer Co-registration Errors

- For an ideal imaging spectrometer, all spectral channels would see the same ground pixel at the same time
- Optical distortion, FPA-to-FPA mechanical alignment errors and relative magnification errors in camera optics can lead to misregistration of channels
- In regions where strong scene gradients exist (e.g. near clouds), registration errors produce spectral artifacts by mixing spectra from neighboring pixels
- The spectral errors are not random noise in the measurement but are correlated across the band affecting science data in a complex way
- The impact of spectrometer registration errors on science data must be quantified using an end-to-end measurement simulation approach

Candidate LEO Mission Parameters

- First mission being studied is an AIRS Follow-On Mission
 - Low-Earth Orbit; enhanced spatial resolution
 - Mission focused on retrieval of atmospheric temperature profiles, water vapor profiles, ozone column and cloud properties
 - Spectral coverage and resolution optimized for these parameters

Candidate AIRS Follow-On Mission Key Measurement Requirements:

Spatial resolution: 1-km

Swath coverage: 1650 km (TBR)

Radiometric Noise < 0.2K (TBR)

Measurement	Accuracy (req.'ed : goal)
Surface Temperature	1K : 0.5K
Temperature profiles	1K (rms) (1-km layers < 100mb)
Humidity profile	20% : 10% (2-km layers < 100mb)
Column Ozone	20%

	Measurement	Spectral Range (cm ⁻¹)	Min. res (cm ⁻¹)	Goal res (cm ⁻¹)	Notes
	Temperature profiles	650 - 768 2228 - 2255 2380 - 2410	0.5 2.0 2.0		Higher spectral resolution improves T sounding throughout range
۱	Humidity profiles	1370-1610	2.0	1	Weaker water lines near 2600 cm ⁻¹ used AIRS
	Ozone Column	1001-1069	0.5		Very high resolution necessary for profile info.
	Surface Temperature	750-1200	~1.0	l	Several channels: 750- 1235 cm ⁻¹ and >2400 cm ⁻¹
	Dust properties	750-1200	~1.0		Higher resolution improves UT/LS retrievals
	Cloud properties	750-1200	~1.0	0.5	3 channels: 8,10,12 mm

Ball Aerospace & Technologies Corp.

Coordinated Path to Space-Flight Programs

SIRAS-G Instrument Incubator Program PI: Thomas Kampe, Ball Aerospace & Technologies Corp.

Objective

- Develop instrument technology for IR atmospheric sounding from GEO and LEO
- Validate operational performance in a laboratory demonstration
- Generate a design recommendation for space flight instrument

Accomplishments

- Radiative transfer forward-modeling tools & OSSE model developed to link instrument requirements/performance to science requirements & used for flight concept development
- Developed single-channel MWIR lab demo that integrates flight-like spectrometer, active cooling, flight-like IR FPA and electronics
- Spectrometer design developed for low distortion (spectral smile & keystone) & excellent image quality. Design form is extendable to multi-leg configuration (3-15 µm spectral coverage)
- · Advanced technology multi-stage warm shield concept demonstrated
- Demo instrument tested in cryogenic environment using test methodology and apparatus developed on BATC IRAD (keystone distortion, smile, MTF, SRF, dispersion)

Technology Development Partners NASA/Jet Propulsion Laboratory

TRLin= 2 TRL current= 4

